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ABSTRACT

A general purpose unstructured mesh solver for steady-state two-dimensional inviscid and
viscous flows is described. The efficiency and accuracy of the method are enhanced by the
simultaneous use of adaptive meshing and an unstructured multigrid technique. A method for
generating highly stretched triangulations in regions of viscous flow is outlined, and a pro-
cedure for implementing an algebraic turbulence model on unstructured meshes is described.
Results are shown for external and internal inviscid flows and for turbulent viscous flow over a
multi-element airfoil configuration.
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1. INTRODUCTION

Numerical methods for the computation of steady-state compressible flows have pro-
gressed to the point where the major obstacle to achieving an efficient and accurate flow solu-
tion for a given problem lies in one's ability to generate an adequate mesh over the given
geometry. For complex configurations, the most often employed approach consists of partition-
ing the domain into a number of topologically simple regions and generating a structured mesh
in each of these regions. The construction of these so-called block-structured meshes has pro-
ven to be an expensive and time consuming process, requiring much human intervention.

An alternate approach is afforded by the use of unstructured meshes using triangular ele-
ments in two dimensions, and tetrahedral elements in three dimensions. Compared with struc-
tured meshes, in which grid lines must propagate across the entire domain, unstructured meshes
are purely local constructions, and thus provide a much greater degree of flexibility in meshing
complex geometries. Furthermore, they provide a natural setting for the use of adaptive mesh-
ing techniques, where new mesh points are added and the grid is restructured locally in regions
where the flow gradients are large.

However, even in the case of inviscid flows, the use of unstructured meshes has often
been impeded by sometimes questionable accuracy and inefficient solvers. The efficiency of
these solvers is hindered by the use of indirect addressing required by the random data sets,
and by the use of relatively simple solution algorithms, due to the difficulties associated in con-
structing implicit solvers on unstructured meshes, which require the inversion of large sparse
matrices. While inefficiencies due to random data sets, which generally result in a reduction by
a factor of three of the number of floating point operations per second (Mflop rate) achievable

on present-day supercomputers, cannot be avoided, efficient solution algorithms requiring near
optimal computational complexity may be devised. In the present work, this has been achieved
through the use of a multigrid strategy [1]. Provided a consistent discretization of the govern-
ing equations is employed, unstructured meshes can be shown to provide extremely accurate
solutions through extensive use of adaptive meshing [2,3,4,51.

For viscous flows, unstructured meshes have seldom been employed, or in certain cases,
have been used only in the inviscid regions of the flow, as part of a hybrid approach where

structured meshes are employed in the regions of viscous flow [6,71. The strong directionality
of the gradients in the viscous flow regions, and the requirements they impose on the mesh
generation procedure, as well as the frequent use of algebraic turbulence models, appears to
have provided a strong deterrent against the use of fully unstructured meshes for viscous flows.

In this paper, the development of an unstructured mesh solver for both inviscid and
viscous steady-state flows about arbitrary two-dimensional geometries is described. This work
represents an effort at constructing a general purpose, accurate, and efficient solution method.
To this end, a general method for setting up the geometrical configuration (spline curves) and

application of boundary conditions has been devised. An unstructured multigrid algorithm is
used in conjunction with an adaptive meshing technique to ensure accurate and efficient solu-
tions. For viscous flow calculations, a procedure for generating and adaptively refining highly
stretched triangulations is presented. The implementation of an algebraic turbulence model for
use on unstructured meshes is also described.
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2. PROBLEM DEFINITION

The first step involves the definition of the problem to be solved, which relates to the
definition of the geometry, and the specification of boundary conditions and initial conditions.

Geometry definition is the first step, which must necessarily be performed prior to the
mesh generation and flow solution phases. In general, the geometrical configuration is
described by an ordered series of points. These points are not employed as mesh points them-
selves. A spline curve which fits these points is constructed, and mesh points are taken at
predetermined locations along this spline curve. Thus, the geometrical configuration is in fact
defined by a series of spline curves. This is especially important when adaptive meshing tech-
niques are considered. New points which are introduced on the boundary must conform to the
spline definition of this boundary, rather than simply being positioned midway between two
neighboring grid points. Hence the geometry definition stage consists of identifying ordered
groups of geometry points which are to be splined, selecting a type of spline for each group,
and generating the spline curve for each group, which is stored as a series of spline coordinates
and coefficients, for later use in the mesh generation and flow solution phases.

The specification of boundary conditions forms part of the problem definition stage and
as such, is best treated prior to the mesh generation and flow solution phases. The original
edges which define the geometry (such edges link two geometry definition points prior to the
spline fitting operation) are sorted into groups, each of which corresponds to a particular type
of boundary condition. This information is then stored for subsequent use in the mesh genera-
tion and flow solution phase. When the initial mesh is generated, boundary points are assigned
the boundary condition corresponding to that of the geometry definition edge from which they
were generated. When adaptively adding points to an existing mesh, new boundary points may
also be assigned a boundary condition type in this manner. In the flow solution phase, applica-
tion of the boundary conditions consists of looping through all boundary points and applying
the appropriate boundary conditions at each point, as dictated by the boundary condition type
associated with each point. To efficiently vectorize this step, boundary points are sorted into
groups, each group representing a specific type of boundary condition, and the appropriate
boundary condition is then executed on each group in a vector fashion. This predetermination
and storage of boundary condition types allows for a completely general flow solution algo-
rithm and facilitates the adaptive insertion of new boundary points without upsetting the logic
of the solver. Finally the specification of initial conditions, such as Mach number, Reynolds
number, and angle of incidence, may be effected without loss of generality as an input list in
the flow solution phase.

In this work, internal as well as external flow geometries have been considered. For
external flow about multi-element airfoil configurations, each airfoil element is defined by a
cubic spline. The circular far-field boundary is "splined" as a linear fit between a set of
defining points. Tangential flow, or zero velocity boundary conditions are applied at the airfoil
surfaces, depending on whether the Euler or Navier-Stokes equations are being solved. In the
far field, a non-reflecting locally one-dimensional characteristic boundary condition is employed
[81.

The internal flow about periodic cascade geometries requires the simultaneous use of two
types of splines and three types of boundary conditions, thus providing a good illustration of
the generality of this process. The initial definition of the geometry for this case, which is dep-
icted in Figure 1, is composed of eight boundary regions. Regions I and 5 represent the
inflow and outflow planes, regions 2,4 and 6,8 represent the periodic line. These regions are
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thus all "splined" as straight line segments. Regions 3 and 7 represent the lower and upper sur-
face of the turbine blade respectively, and are defined by cubic splines. In order to maintain
continuity of slope and curvature at the leading and trailing edge points (i.e. the periodic points
of the blade), in addition to the lower surface points, a periodic representation of the upper
surface points is constructed and used in conjunction with these points to define the spline
along the lower surface of the blade. A similar treatment is employed for the upper surface in
boundary region 7. In regions I and 2, inlet and outlet boundary conditions are specified
respectively. For the inlet flow, total pressure, total enthalpy, and the flow angle are specified,
while the remaining condition is obtained by extrapolating the locally one-dimensional outgo-
ing Riemann invariant normal to the boundary from the interior. For the outflow boundary,
back pressure is specified, and total pressure, total enthalpy plus the outgoing locally one-
dimensional Riemann invariant normal to the boundary are extrapolated from the interior
[9,10]. In regions 3 and 7, flow tangency or zero velocity conditions are imposed, depending
on whether inviscid or viscous flow solutions are sought. In regions 2, 4, 6, and 8, periodic
boundary conditions are applied. A natural way of implementing periodic boundary conditions
in the context of unstructured meshes is through the use of pointers. Each periodic boundary
point is associated with its duplicate point on the corresponding periodic boundary through an
integer pointer, which points to the address of the appropriate point. Thus, logically, the two
corresponding periodic points refer to the same point, and are thus updated simultaneously and
identically. However, duplicate physical copies of this point are required, each with a different
physical coordinate, and each referring to a point on one of the two periodic cuts.

3. MESH GENERATION

3.1. Initial Mesh Generation

The initial unstructured mesh is generated in three essentially independent stages. In the
first stage, a distribution of mesh points filling the domain is generated. These points are then
joined together to form a set of non-overlapping triangles using a Delaunay triangulation algo-
rithm. Finally, a post-processing operation is employed to smooth out the mesh by slightly
repositioning the points according to an elliptic smoothing operator [11].

While adaptive meshing techniques can be relied upon to increase the mesh resolution in
regions of high flow gradients, a good initial mesh point distribution is essential to ensure the
capture of all salient flow features on the initial mesh, and to reduce the number of adapivity
cycles required to attain a given accuracy level. This is particularly true in the case of high
Reynolds number viscous flows, where very small normal spacings are required in the viscous
regions. Since much effort has been expended in devising structured mesh generation strategies
for specific types of geometries, these provide a natural starting point for the generation of a
mesh point distribution. Each component of the geometry may be fitted locally with a struc-
tured mesh, suitable to that particular type of component, and the union of all the points from
these overlapping local meshes, which lie in the flow field, used as the basis for the triangula-
tion. For multi-element airfoils, an O-mesh is fitted around each airfoil element using a hyper-
bolic mesh generation algorithm [12]. For internal flow cascade geometries, the initial mesh
point distribution is derived from a structured H-mesh [10].

Delaunay triangulation represents a unique way of joining a set of points in a plane
together to form a set of non-overlapping triangles. Bowyer's algorithm [13,141 is used to con-
struct the triangulation. Assuming an initial triangulation exists (this may be constructed by
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joining a small number of boundary points together), the mesh points are introduced and tri-
angulated one at a time into the existing triangulation. Bowyer's algorithm makes use of the
circumcircle property of a Delaunay construction, which states that the circumcircles of the tri-
angles may not contain vertices from other triangles. Thus, each time a new mesh point is
introduced, the union of all triangles whose circumcircles contain this new point is identified.
The existing mesh structure is removed in this region and new triangles are formed by joining
the new point to all the vertices of the restructured region. When all mesh points have been
introduced and triangulated, the initial unstructured mesh is obtained.

3.2. Adaptive Mesh Generation

This sequential insertion and local restructuring of new mesh points is ideally suited for
an adaptive meshing strategy. Once a solution has been obtained on the initial mesh, new
mesh points are created midway along mesh edges in regions of large flow gradients. Each
new mesh point is then triangulated into the existing mesh using Bowyer's algorithm. The

search for the triangles whose circumcircles are intersected by the new point can be made
extremely efficient by beginning with the two triangles on either side of the edge within which
the new point was generated, and then searching through neighboring triangles. Hence, adap-
tive mesh enrichment may be accomplished using only local searching and restructuring, thus
avoiding the need for global mesh regeneration. When new boundary points are created, they
must be positioned on the spline curve which defines that boundary. For concave boundaries,
this results in mesh points which are not enclosed by any of the existing mesh triangles, as

shown in Figure 2. To avoid failure of the intersected circumcircle search routine, new boun-
dary points are initially positioned midway along the boundary edge within which they are
generated. The circumcircle search and local retriangulation are then effected. The new mesh
point is then displaced onto the spline curve, thus forming a sliver triangle which joins the new
point with the two ends of the generating mesh edge. Such sliver triangles, which lead to a
crossing of grid lines for concave boundaries (c.f. Figure 2), and for convex boundaries
represent elements exterior to the computational domain, must be identified and subsequently
removed.

4. FLOW SOLUTION

In conservative form, the full Navier-Stokes equations read

aw af, ag, 4jM.. raf, ak,( 1S+ -+- =- y+- (1)
7t Iax ay Re__ 1 x ay I

where w is the solution vector and f, and g, are the cartesian components of the convective
fluxes

pu pu 2 + P pvu (2)

Jfc=PU2 C pV

k puE+up pvE+vp

In the above equations, p represents the fluid density, u and v the x and y components of fluid

velocity, E the total energy, and p is the pressure which can be calculated from the equation of

state of a perfect gas

p = (t-O)pl (u+V2) (3)
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The viscous fluxes f. and g, are given by

001
f'= Z 9V7 g'= (4)

uc .+va 13-q. .uary+va3,-qy

where a represents the stress tensor, and q the heat flux vector, which are given by the consti-
tutive equations for a Newtonian fluid

,a. = 2w. - 2I(u.+VY)
3

ay = 2tvy - 2 t(ux+Vy)

"=a = = p± I(uY+V) (5)

qx = -k aT  Yi .= =I .P_
ax y-'l Pr ax

a P_Y = k Y_ . ,U ._ ._ .. P_
aY= y --1I Pr ay

y is the ratio of specific heats of the fluid, M. the freestream Mach number, Re. the Reynolds
number based on the airfoil chord, and Pr the Prandtl number. The coefficient of viscosity 4I
varies with the temperature of the fluid, and is calculated as

g = KT 0.72  (6)

where K is a constant. Equation (1) represents a set of partial differential equations which
must be discretized in space in order to obtain a set of coupled ordinary differential equations,
which can then be integrated in time to obtain the steady-state solution.

The spatial discretization procedure begins by storing flow variables at the vertices of the
triangles. The stress tensor a and the heat flux vector q must be calculated at the centers of the
triangles. This is achieved by computing the required first differences in the flow variables
(from equations (5)) at the triangle centers. For a piecewise linear approximation of the flow
variables in space, the first differences are constant over each triangle, and may be computed
as

Ir _w 3 Wk+1 + WkW- = -: dxd=y = AY - (Yk+I- YJ (7)
aJw 3 W Y~lk 7

= f f--dxdy = 3fw dx = 1 -k+ wk (8)2 (x+1-XA)

where the summation over k refers to the three vertices of the triangle. The flux balance equa-
tions are obtained by a Galerkin finite-element type formulation. The Navier-Stokes equations
are first rewritten in vector notation

aw Y rM-T + V.F, = V.F, (9)
Re-. )

where the bold typeset denotes vector quantities. F, is a dyadic (second order tensor), the
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cartesian components of which are given by the f, and g, convective flux vectors defined previ-
ously, and a similar notation is employed for the viscous flux terms. Multiplying by a test
function 0, and integrating over physical space yields

a fj.w dxdy + xV dxdy fjOVF dxdy (10)t Re-.

Integrating the flux integrals by parts, and neglecting boundary terms gives

dxdy = F(F NO dxdy - - . ffF,.NOdxdy (11)

In order to evaluate the flux balance equations at a vertex P, 0 is taken as a piecewise linear
function which has the value 1 at node P, and vanishes at all other vertices. Therefore, the
integrals in the above equation are non-zero only over triangles which contain the vertex P,
thus defining the domain of influence of node P, as shown in Figure 3. To evaluate the above
integrals, we make use of the fact that 0,, and Oy are constant over a triangle, and may be
evaluated as per equations (7) and (8). The convective fluxes F, are taken as piecewise linear
functions in space, and the viscous fluxes F, are piecewise constant over each triangle, since
they are formed from first derivatives in the flow variables. Evaluating the flux integrals with
these assumptions, one obtains

rr~r~ -~F+F~ +j Fwd,.cALA v (12T W T 6 Re- (12)
where the summations are over all triangles in the domain of influence, as shown in Figure 3.
AA represents the directed (normal) edge length of the face of each triangle on the outer boun-
dary of the domain, FA FB are the convective fluxes at the two vertices at either end of this
edge, and F, is the viscous flux in triangle e, e being a triangle in the domain of influence of t.
If the integral on the left hand side of equation (12) is evaluated in the same manner, the time
derivatives become coupled in space. Since we are not interested in the time-accuracy of the
scheme, but only in the final steady-state solution, we employ the concept of a lumped mass
matrix. This is equivalent to assuming w to be constant over the domain of influence while
integrating the left hand side. Hence, we obtain

,___ IM..,. "23( .N (13)

OP t e--I 2 Re.AL,. - 2L- (13)

where the factor of 1/3 is introduced by the integration of 0 over the domain, and flp represents
the surface area of the domain of influence of P. For the convective fluxes, this procedure is
equivalent to the vertex finite-volume formulation described in [1, 11]. For a smoothly varying
regular triangulation, the above formulation is second-order accurate.

Additional artificial dissipation terms are required to ensure stability and to capture
shocks without producing numerical oscillations. This is necessary for both inviscid and
viscous flow computations, since in the later case, large regions of the flow field behave essen-
tially inviscidly and the physical viscosity is not sufficient to guarantee numerical stability for
the type of mesh spacings typically employed. Artificial dissipation terms are thus constructed
as a blend of a Laplacian and a biharmonic operator in the conserved flow variables. The
Laplacian term represents a strong formally first-order accurate dissipation which is turned on
only in the vicinity of a shock, and the biharmonic term represents a weaker second-order
accurate dissipation which is employed in regions of smooth flow [11,151. The spatially



-7-

discretized equations are integrated in time to obtain the steady-state solution using a five-stage
time-stepping scheme, where the convective terms are evaluated at each stage within a time
step, and the dissipative terms (both physical and artificial) are only evaluated at the first, third,
and fifth stages. This particular scheme has been designed to maintain stability in regions
where the flow is dominated by viscous effects, and to rapidly dampen out high-frequency
error components, which is an essential feature for a scheme intended to drive a multigrid algo-
rithm [16,17]. Convergence is accelerated by making use of local time-stepping, implicit resi-
dual averaging [161, and an unstructured multigrid algorithm [1].

The idea of a multigrid strategy is to accelerate the convergence to steady-state of a fine
grid solution through corrections computed on coarser grids. An initial time step is performed
on the fine grid, and the flow variables and residuals are then transferred to the coarse grid. A
correction equation is constructed on the coarse grid by adding a forcing function to the origi-
nal discretized equations. This forcing function is formed by taking the difference between the
transferred residuals and the residuals of the transferred variables, thus ensuring that the evolu-
tion of the coarse grid equations is driven by the fine grid residuals. Hence, when the fine grid
residuals vanish, the coarse grid equations are identically satisfied, and generate zero correc-
tions. After transferring values down from the fine grid, a time step is performed on the coarse
grid, and the new values are transferred down to the next coarser grid. When the coarsest grid
is reached, the computed corrections are successively interpolated back up to the finest grid,
and the entire cycle is repeated. In the context of unstructured meshes, a sequence of coarse
and fine meshes is best constructed by generating the individual meshes independently from
one another (as opposed to subdividing a coarse mesh). Thus, in general, the coarse and fine
meshes of a given sequence do not have any common mesh points or nested elements. Thus,
the patterns for transferring the variables, residuals, and corrections back and forth between the
various meshes of the sequence must be determined in a preprocessing operation, where an
efficient tree-search algorithm is employed [1].

Such a multigrid algorithm may be combined with an adaptive meshing strategy in a
natural m-,ner. First, a sequence of globally generated meshes is constructed, and multigrid
time-stepping is performed on this sequence until a satisfactorily converged solution is
obtained. At this point, a new adaptively refined mesh is generated, and the transfer patterns
for transferring variables from the previous mesh to the new mesh are determined. The flow
variables are then transferred to this new mesh, providing a starting solution, and multigrid
time-stepping is resumed on this new sequence which now contains an additional fine mesh.
The process may be repeated, as shown in Figure 4, each time adding a new finer mesh to the
sequence, until a converged solution of the desired accuracy is obtained.

5. INVISCID FLOW RESULTS

When the viscous terms in the Navier-Stokes equations are neglected, the Euler equations
are obtained. Inviscid flow calculations can thus be computed using the method previously
described, but neglecting the terms on the right-hand-side of equations (1) and/or (9), and
replacing the no-slip wall boundary condition with a tangential slip velocity boundary condi-
tion. Inviscid flow computations can be performed for a significantly lower cost than viscous
flow computations, not only due to the reduced number of terms which need to be discretized,
but also due to the elimination of the boundary layer and wake regions, where extremely high
gradients generally occur, and which must be resolved in the viscous case.
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5.1. External Flow Geometry

The first test case consists of the computation of the inviscid compressible flow about a

high-lift three-element airfoil configuration. The free-stream Mach number is 0.2, and the
incidence is 8 degrees. At these conditions, the flow is entirely subcritical. However, an
extreme double suction peak occurs at the leading edge of the main airfoil, where the flow
becomes nearly sonic. The capture of this extremely high localized gradient requires a very fine
mesh resolution in this region. A sequence of seven meshes were used in the multigrid algo-
rithm. The first three meshes were generated globally, and the further four meshes were gen-
erated by adaptive refinement. The criterion for adaptive mesh enrichment is based on the undi-
vided difference of density [18]. The first difference of density computed along each mesh
edge is examined. When this difference is larger than some fraction of the RMS average of all
density differences across the mesh, a new point is added midway along the edge. A second
pass is then performed which splits the remaining edges of each triangular element bordering
on a previously split edge, thus ensuring an isotropic refinement. The finest mesh of this cal-
culation is depicted in Figure 5. It contains 11949 nodes, of which 512 are on the airfoil sur-
faces. Extreme refinement is seen to occur in the main airfoil leading edge region and in the
gap regions. A globally refined mesh of this resolution would have required 10 to 20 times
more points, and thus would be prohibitively expensive. The coarsest mesh of the sequence
contains merely 110 points. The computed Mach contours in the flow field are depicted in Fig-

ure 6, where the high gradients in the leading-edge region are evident. In Figure 7, a com-

parison of the computed surface pressure distribution with that generated by a finite-element
full potential solver [19], shows good agreement between the two methods, and illustrates the

magnitude of the suction peak, where the pressure coefficient rapidly attains a value of -16.0.
The convergence history for this case is depicted in Figure 8, where the fine grid residuals

were reduced down to machine zero (in double precision) in just over 300 multigrid cycles.
Each multigrid cycle required roughly 1.8 CPU seconds on a single processor of a Cray-2

supercomputer, so that engineering calculations (50 - 100 mg cycles) could be obtained in 2 to
3 CPU minutes.

5.2. Internal Flow Calculations

In a second test case, the inviscid flow through a turbine blade cascade geometry has

been computed. The particular blade geometry has been the subject of an experimental and
computational investigation at the occasion of a VKI lecture series [20]. A total of seven
meshes were used in the muldgrid algorithm, with the last three meshes generated adaptively,
using the undivided density difference criterion. The coarsest mesh of the sequence contains
only 51 points, while the finest mesh, depicted in Figure 9, contains 9362 points. Extensive
mesh refinement can be seen to occur in the neighborhood of shocks, and in other regions of
high gradients. The inlet flow incidence is 30 degrees, and the average inlet Mach number is

0.27. The flow is turned 96 degrees by the blades, and the average exit isentropic Mach

number is 1.3. At these conditions, the flow becomes supersonic as it passes through the cas-

cade, and a complex oblique shock wave pattern is formed. These are evident from the com-
puted Mach contours depicted in Figure 10. All shocks are well resolved, including some of

the weaker reflected shocks, which non-adapted mesh computations often have difficulty

resolving [10]. Details of the flow in the rounded trailing edge region of the blade are shown

in Figure 10, where oblique shock waves are formed on the upper and lower surfaces of the

blade, and where the flow separates (inviscidly), forming a small recirculation region. The
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surface isentropic Mach number distribution for this case is compared with experimental data
provided from [20], in Figure 11. The upper surface experimental values correspond to an exit
isentropic Mach number of 1.31, while the lower surface experimental values are taken from a
case where the measured exit isentropic Mach number was 1.21. These values are included
since lower surface data was not available for an exit Mach number of 1.31, and since the
lower surface values were seen to be relatively insensitive to the exit Mach number in this
range. Keeping in mind the inviscid nature of the computational results, good agreement is
observed over most of the surface of the blade. The irregularities in the numerical solution are
due to a poor surface definition of the blade, the effect of which is enhanced by the adaptive
meshing procedure, which tends to refine the mesh in the vicinity of non-smooth geometries.
Once the first four globally generated meshes were constructed, the entire flow solution - adap-
tive mesh enrichment cycle was performed three times, executing 25 multigrid cycles at each
stage. This entire operation required 40 CPU seconds on a single processor of a Cray-YMP
supercomputer. The residuals on the finest mesh were reduced by two and a half orders of
magnitude, which should be adequate for engineering calculations. The efficiency of this solu-
tion illustrates the possibility of constructing a truly interactive adaptive mesh Euler solver in
two-dimensions, provided the present algorithm may be efficiently implemented in parallel on
all eight processors of the Cray-YMP.

6. CONSIDERATIONS FOR HIGH REYNOLDS NUMBER VISCOUS FLOWS

While the methodology previously described applies in principle to viscous flows as well,
the efficient solution of high Reynolds number flows requires the generation of highly stretched
meshes as well as the implementation of a turbulence model for use on unstructured meshes.

6.1. Mesh Generation

The generation of highly stretched unstructured meshes requires a suitable mesh point
distribution, with closely packed points in the normal direction, and sparsely distributed points
in the streamwise direction, as well as a method for producing an appropriate triangulation of
such a point distrib-.Ltion. The generation of a suitable point distribution may be effected as pre-
viously described, using local hyperbolically generated structured meshes. However, a
Delaunay triangulation of a given set of points tends to produce the most equiangular triangles
possible, and therefore in general, is not well suited for the generation of highly stretched mesh
elements. Thus, an alternate triangulation procedure must be employed. The approach taken
consists of defining a stretching vector (stretching magnitude and direction) at each node of the
initial point distribution throughout the flow field. Assuming an initial triangulation has been
obtained, when a new mesh point is to be inserted, the associated stretching vector is employed
to construct a locally mapped space such that, within this mapped space, the local point distri-
bution appears isotropic. A Delaunay triangulation is then performed to triangulate the new
point into the mesh in this mapped space, and the resulting triangulation is mapped back into
physical space, thus resulting in the desired stretched triangulation [21]. Hence, a fully
unstructured mesh with highly stretched elements in the boundary layer and wake regions,
nearly equilateral triangles in the inviscid regions of flow, and a smooth variation of elements
throughout the transition regions is obtained. The use of fully unstructured meshes for viscous
flow calculations has been pursued, as opposed to the hybrid structured-unstructured meshes
often advocated in the literature [6,71, due to the increased generality they afford in dealing
with geometries with close tolerances between neighboring bodies, where confluent boundary
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layers may occur, and due to the ease with which adaptive meshing may be incorporated
throughout the viscous and inviscid regions of flow.

6.2. Turbulence Modeling for Unstructured Meshes

Algebraic turbulence models typically require information concerning the distance of each
mesh point from the nearest wall. Turbulence length scales, which are related to the local

boundary layer or wake thickness, are determined by scanning the appropriate flow values
along specified streamwise stations. For example, the Baldwin-Lomax turbulence model [221

uses the location of the maximum of the moment of vorticity along streamwise stations normal
to the boundary layer to estimate the local turbulence length scales. In the context of unstruc-
tured meshes, mesh points and thus flow variables do not naturally occur at regular streamwise
locations. Thus, lines normal to the walls and viscous layers must be created and flow variables
interpolated onto these lines, in order that the turbulence length scales may be determined. This

type of approach has previously been implemented for supersonic ramp geometries i , Rostand
[23]. However, in the present work, more complex geometries must be accommodated. Recal-
ling that, in the mesh generation procedure, the initial mesh point distribution was obtained by
generating a series of local structured meshes about each geometry component, a natural
manner of creating streamwise turbulence modeling stations is to make use of these local struc-
tured meshes as background meshes for the turbulence modeling routine. Thus, at each time
step in the solution procedure, the current flow variables from the global unstructured mesh are
interpolated onto each of the local structured meshes. The Baldwin-Lomax turbulence model is
executed on these local structured meshes, and the resulting eddy viscosity distribution is inter-
polated back onto the unstructured mesh. In regions where two or more local structured meshes
overlap, the multiple eddy viscosity values (one from each local mesh) which are interpolated
back to the unstructured mesh are each weighted by their relative distance from the respective
wall. Structured mesh lines emanating from one geometry component are terminated if they
intersect a neighboring component, as shown in Figure 12, such that in any region of the flow
field, the eddy viscosity is only related to the viscous layers and associated walls which are
directly visible from that point. The same interpolation routine employed for the multigrid
algorithm are used to pass variables back and forth between the global unstructured mesh and
the local structured turbulence meshes. The determination of these transfer patterns is done in
an efficient preprocessing operation, and the transfer addresses and coefficients are stored for
subsequent use in the turbulence modeling routine. The whole process is very efficient, and in
general, the entire turbulence modeling routine, including the interpolation procedures requires
only 15% of the total time within a multigrid cycle. Memory requirements are however
increased by about 50%, since extra variables and transfer coefficients must be stored for the
local structured meshes.

7. TURBULENT FLOW RESULTS

The above modifications have been incorporated into the present scheme in order to com-

pute the turbulent flow in the transonic regime past a two-element airfoil. The cc,,ffiguration
consists of a main airfoil with a leading edge slat, which has been the subject of extensive

wind tunnel tests [24], as part of a program aimed at improving the maneuvering capabilities of

fighter aircraft in the transonic regime. A multigrid sequence of five meshes was employed to
compute the flow about this configuration. The finest mesh is depicted in Figure 13. It con-

tains 22,509 points, of which 256 lie on the surface of the main airfoil, and 128 on the surface



of the slat. The average width of the elements on the airfoil surfaces is 0.00001 chords, result-
ing in cell aspect ratios of the order of 1000:1 in these regions. The turbulence background
meshes, consisting of one local structured mesh for each airfoil component, are depicted in
Figure 12. The computed Mach contours are shown in Figure 14. For this case, the freestream
Mach number is 0.5, the Reynolds number based on the chord is 4.5 million, and the incidence
is 2.8 degrees. At these conditions, the flow is supercritical, and a shock is formed on the
upper surface of the slat, as can be seen from the figure. The computed shock is somewhat
diffuse, and an increased mesh resolution in this region would be required to obtain a crisper
shock definition. llowever, the sudden thickening of the boundary layer as it interacts with the
shock is evident from the computed Mach contours. A small recirculation region is also
observed on the lower surface of the slat. A comparison of the computed surface pressure dis-
tribution with the experimental wind tunnel data is given in Figure 15. Computed and experi-
mental values are seen to agree favorably in all regions, demonstrating a good prediction of the
suction peaks, and location of the slat upper surface shock. This solution required roughly eight
cpu minutes on a single processor of a Cray-2 supercomputer, which corresponds to 75 mul-
tigrid cycles on the finest grid, during which the residuals were reduced by approximately three
orders of magnitude. To the author's knowledge, this represents the first compressible turbulent
flow calculation for multi-element airfoil geometries using unstructured meshes.

8. CONCLUSION

A method for solving viscous and inviscid flows about arbitrary two-dimensional
configurations has been presented. An attempt has been made to keep the method as general as
possible. The simultaneous use of multigrid and adaptive meshing results in a rapidly conver-
gent and accurate solution. For a given number of unknowns (mesh points), unstructured mesh
solutions can be obtained with roughly the same number of operations as is required by the
most efficient current structured mesh solvers. However, the speed of execution of unstruc-
tured mesh codes on present-day vector computers is roughly three times slower than that
observed with structured mesh codes, due to the indirect addressing and scatter-gather opera-
tions required by the use of random data-sets. However, this factor can easily be outweighed
through the use of a more efficient placement of grid points, using adaptive meshing tech-
niques. For inviscid computations, the present algorithm appears robust and efficient enough
that it may be implemented in an interactive mode on the latest generation of supercomputers.
An inviscid solver based on these techniques in three dimensions, which is in the planning
stages, should also provide a competitive solution technique for large problems. For turbulent
viscous flow calculations, substantial modifications to the mesh generation phase were required.
The implementation of an algcbraic turbulence model has demonstrated a good prediction capa-
bility for flow over streamlined bodies. In future work, the implementation of a more general
turbulence model, such as a field equation model, will be considered for flow over arbitrary
geometries with massive separation.
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Figure 1
Definition of the Various Boundary Regions for the Periodic

Turbine Blade Cascade Geometry
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Figure 2
Illustration of an Adaptively Inserted Boundary Point in the

Region of a Concave Boundary and Resulting Sliver Cross-Over Triangle
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Figure 3
Domain of Influence of Finite-Element Basis Function and Equivalent

Finite-Volume Control Volume
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Figure 4
Full Multigrid Algorithm Employed in Conjunction with Adaptive Meshing Strategy



Figure 5
Adapted Mesh Employed for Computing Inviscid Subcritical Flow over a

Three-Element Airfoil Configuration; Number of Nodes - 11949



Figure 6
Computed Mach Contours for Inviscid Subcritical Flow over a Three Element Airfoil Configuration

Mach - 0.2, Incidence -8 degrees
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Figure 7
Comparison of the Computed Surface Pressure Distribution for the Present Euler

Solution with that of a Full Potential Solution from (191; Mach - 0.2, Incidence - 8 degrees
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Figure 8
Convergence Rate on Finest Mesh for the Three-Element Airfoil Case

as Measured by the Average of the Density Residuals throughout the Plowfleld
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Figure 9
Adaptive Mesh Employed for Computing Transonic Inviscid Flow Through

a Periodic Turbine Blade Cascade Geometry; Number of Nodes - 9362
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Figure 10
Computed Mach Contours for Flow Through a Periodic Turbine Blade

Cascade Geometry
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Figure 12

Illustration of Local Structured Background Turbulence Modeling Meshes Employed
for Computing Turbulent Flow over a Two-Element Airfoil Configuration
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Figure 13
Fully Unstructured Mesh Employed for Computing Supercritical Turbulent

Viscous Flow over a Two-Element Airfoil Configuration; Number of Nodes = 22,509
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Figure 14
Computed Mach Contours of Supercritical Turbulent Viscous Flow over a Two-Element Airfoil Configuration

Mach Number - 0.5, Reynolds Number . 4.5 million, Jncidence - 2.8 degrees
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Figure 15
Comparison of Computed Surface Pressure Distribution with Experimental

Wind-Tunnel Data for Flow Over Two-Element Airfoil Configuration
Mach Number - 0.5, Reynolds Number = 4.5 million, Incidence = 2.8 degrees
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